In quantum information, the gnu code refers to a particular family of quantum error correcting codes, with the special property of being invariant under permutations of the qubits. Given integers g (the gap), n (the occupancy), and m (the length of the code), the two codewords are


where
are the Dicke states consisting of a uniform superposition of all weight-k words on m qubits, e.g.

The real parameter
scales the density of the code. The length
, hence the name of the code. For odd
and
, the gnu code is capable of correcting
erasure errors,[1] or deletion errors.[2]
References
Quantum information science |
---|
General | |
---|
Theorems |
- Bell's
- Eastin–Knill
- Gleason's
- Gottesman–Knill
- Holevo's
- No-broadcasting
- No-cloning
- No-communication
- No-deleting
- No-hiding
- No-teleportation
- PBR
- Quantum speed limit
- Threshold
- Solovay–Kitaev
- Schrödinger-HJW
|
---|
Quantum communication |
- Classical capacity
- entanglement-assisted
- quantum capacity
- Entanglement distillation
- Entanglement swapping
- Monogamy of entanglement
- LOCC
- Quantum channel
- State purification
- Quantum teleportation
- quantum energy teleportation
- quantum gate teleportation
- Superdense coding
|
---|
Quantum algorithms | |
---|
Quantum complexity theory |
- BQP
- DQC1
- EQP
- QIP
- QMA
- PostBQP
|
---|
Quantum processor benchmarks | |
---|
Quantum computing models | |
---|
Quantum error correction |
- Codes
- 5 qubit
- CSS
- GKP
- quantum convolutional
- stabilizer
- Shor
- Bacon–Shor
- Steane
- Toric
- Entanglement-assisted
|
---|
Physical implementations | Quantum optics |
- Cavity QED
- Circuit QED
- Linear optical QC
- KLM protocol
|
---|
Ultracold atoms |
- Neutral atom QC
- Trapped-ion QC
|
---|
Spin-based | |
---|
Superconducting | |
---|
|
---|
Quantum programming | |
---|
Quantum information science
Quantum mechanics topics
|