This article is about the distribution introduced by Diaz and Teruel. For the Tsallis q-Gaussian, see
q-Gaussian .
In mathematical physics and probability and statistics , the Gaussian q -distribution is a family of probability distributions that includes, as limiting cases , the uniform distribution and the normal (Gaussian) distribution . It was introduced by Diaz and Teruel. It is a q-analog of the Gaussian or normal distribution .
The distribution is symmetric about zero and is bounded, except for the limiting case of the normal distribution. The limiting uniform distribution is on the range -1 to +1.
Definition
The Gaussian q-density.
Let q be a real number in the interval [0, 1). The probability density function of the Gaussian q -distribution is given by
s
q
(
x
)
=
{
0
if
x
<
−
ν
1
c
(
q
)
E
q
2
−
q
2
x
2
[
2
]
q
if
−
ν
≤
x
≤
ν
0
if
x
>
ν
.
{\displaystyle s_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu \\{\frac {1}{c(q)}}E_{q^{2}}^{\frac {-q^{2}x^{2}}{[2]_{q}}}&{\text{if }}-\nu \leq x\leq \nu \\0&{\mbox{if }}x>\nu .\end{cases}}}
where
ν
=
ν
(
q
)
=
1
1
−
q
,
{\displaystyle \nu =\nu (q)={\frac {1}{\sqrt {1-q}}},}
c
(
q
)
=
2
(
1
−
q
)
1
/
2
∑
m
=
0
∞
(
−
1
)
m
q
m
(
m
+
1
)
(
1
−
q
2
m
+
1
)
(
1
−
q
2
)
q
2
m
.
{\displaystyle c(q)=2(1-q)^{1/2}\sum _{m=0}^{\infty }{\frac {(-1)^{m}q^{m(m+1)}}{(1-q^{2m+1})(1-q^{2})_{q^{2}}^{m}}}.}
The q -analogue [t ]q of the real number
t
{\displaystyle t}
is given by
[
t
]
q
=
q
t
−
1
q
−
1
.
{\displaystyle [t]_{q}={\frac {q^{t}-1}{q-1}}.}
The q -analogue of the exponential function is the q-exponential , E x q , which is given by
E
q
x
=
∑
j
=
0
∞
q
j
(
j
−
1
)
/
2
x
j
[
j
]
!
{\displaystyle E_{q}^{x}=\sum _{j=0}^{\infty }q^{j(j-1)/2}{\frac {x^{j}}{[j]!}}}
where the q -analogue of the factorial is the q-factorial , [n ]q !, which is in turn given by
[
n
]
q
!
=
[
n
]
q
[
n
−
1
]
q
⋯
[
2
]
q
{\displaystyle [n]_{q}!=[n]_{q}[n-1]_{q}\cdots [2]_{q}\,}
for an integer n > 2 and [1]q ! = [0]q ! = 1.
The Cumulative Gaussian q-distribution.
The cumulative distribution function of the Gaussian q -distribution is given by
G
q
(
x
)
=
{
0
if
x
<
−
ν
1
c
(
q
)
∫
−
ν
x
E
q
2
−
q
2
t
2
/
[
2
]
d
q
t
if
−
ν
≤
x
≤
ν
1
if
x
>
ν
{\displaystyle G_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu \\[12pt]\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{x}E_{q^{2}}^{-q^{2}t^{2}/[2]}\,d_{q}t&{\text{if }}-\nu \leq x\leq \nu \\[12pt]1&{\text{if }}x>\nu \end{cases}}}
where the integration symbol denotes the Jackson integral .
The function G q is given explicitly by
G
q
(
x
)
=
{
0
if
x
<
−
ν
,
1
2
+
1
−
q
c
(
q
)
∑
n
=
0
∞
q
n
(
n
+
1
)
(
q
−
1
)
n
(
1
−
q
2
n
+
1
)
(
1
−
q
2
)
q
2
n
x
2
n
+
1
if
−
ν
≤
x
≤
ν
1
if
x
>
ν
{\displaystyle G_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu ,\\\displaystyle {\frac {1}{2}}+{\frac {1-q}{c(q)}}\sum _{n=0}^{\infty }{\frac {q^{n(n+1)}(q-1)^{n}}{(1-q^{2n+1})(1-q^{2})_{q^{2}}^{n}}}x^{2n+1}&{\text{if }}-\nu \leq x\leq \nu \\1&{\text{if}}\ x>\nu \end{cases}}}
where
(
a
+
b
)
q
n
=
∏
i
=
0
n
−
1
(
a
+
q
i
b
)
.
{\displaystyle (a+b)_{q}^{n}=\prod _{i=0}^{n-1}(a+q^{i}b).}
Moments
The moments of the Gaussian q -distribution are given by
1
c
(
q
)
∫
−
ν
ν
E
q
2
−
q
2
x
2
/
[
2
]
x
2
n
d
q
x
=
[
2
n
−
1
]
!
!
,
{\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{\nu }E_{q^{2}}^{-q^{2}x^{2}/[2]}\,x^{2n}\,d_{q}x=[2n-1]!!,}
1
c
(
q
)
∫
−
ν
ν
E
q
2
−
q
2
x
2
/
[
2
]
x
2
n
+
1
d
q
x
=
0
,
{\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{\nu }E_{q^{2}}^{-q^{2}x^{2}/[2]}\,x^{2n+1}\,d_{q}x=0,}
where the symbol [2n − 1]!! is the q -analogue of the double factorial given by
[
2
n
−
1
]
[
2
n
−
3
]
⋯
[
1
]
=
[
2
n
−
1
]
!
!
.
{\displaystyle [2n-1][2n-3]\cdots [1]=[2n-1]!!.\,}
See also
References
Díaz, R.; Pariguan, E. (2009). "On the Gaussian q-distribution". Journal of Mathematical Analysis and Applications . 358 : 1– 9. arXiv:0807.1918 . doi:10.1016/j.jmaa.2009.04.046 . S2CID 115175228 .
Diaz, R.; Teruel, C. (2005). "q,k-Generalized Gamma and Beta Functions" (PDF) . Journal of Nonlinear Mathematical Physics . 12 (1): 118– 134. arXiv:math/0405402 . Bibcode:2005JNMP...12..118D . doi:10.2991/jnmp.2005.12.1.10 . S2CID 73643153 .
van Leeuwen, H.; Maassen, H. (1995). "A q deformation of the Gauss distribution" (PDF) . Journal of Mathematical Physics . 36 (9): 4743. Bibcode:1995JMP....36.4743V . CiteSeerX 10.1.1.24.6957 . doi:10.1063/1.530917 . hdl:2066/141604 . S2CID 13934946 .
Exton, H. (1983), q-Hypergeometric Functions and Applications , New York: Halstead Press, Chichester: Ellis Horwood, 1983, ISBN 0853124914 , ISBN 0470274530 , ISBN 978-0470274538
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint)
Discrete:
Ewens
Multinomial
Continuous:
Dirichlet
Multivariate Laplace
Multivariate normal
Multivariate stable
Multivariate t
Normal-gamma
Matrix-valued:
LKJ
Matrix beta
Matrix normal
Matrix t
Matrix gamma
Wishart
Normal
Inverse
Normal-inverse
Complex
Uniform distribution on a Stiefel manifold
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate and singular Families