List of named differential equations

Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.

Mathematics

Algebraic geometry

Complex analysis

Differential geometry

Dynamical systems and Chaos theory

Mathematical physics

Ordinary Differential Equations (ODEs)

Riemannian geometry

Physics

Astrophysics

  • Chandrasekhar's white dwarf equation
  • Lane-Emden equation
  • Emden–Chandrasekhar equation
  • Hénon–Heiles system

Classical mechanics

Electromagnetism

  • Bloch equations
  • Continuity equation for conservation laws
  • Maxwell's equations
  • Poynting's theorem

Fluid dynamics and hydrology

  • Acoustic theory
  • Benjamin–Bona–Mahony equation
  • Biharmonic equation
  • Blasius boundary layer
  • Boussinesq approximation (buoyancy)
  • Boussinesq approximation (water waves)
  • Buckley–Leverett equation
  • Camassa–Holm equation
  • Chaplygin's equation
  • Continuity equation for conservation laws
  • Convection–diffusion equation
    • Double diffusive convection
  • Davey–Stewartson equation
  • Euler–Tricomi equation
  • Falkner–Skan boundary layer
  • Gardner equation in hydrodynamics
  • General equation of heat transfer
  • Geophysical fluid dynamics
    • Potential vorticity
    • Quasi-geostrophic equations
    • Shallow water equations
    • Taylor–Goldstein equation
  • Groundwater flow equation
    • Richards equation
  • Hicks equation
  • Kadomtsev–Petviashvili equation in nonlinear wave motion
  • KdV equation
  • Magnetohydrodynamics
    • Grad–Shafranov equation
  • Navier–Stokes equations
  • Nonlinear Schrödinger equation in water waves
  • Omega equation
  • Orr–Sommerfeld equation
  • Porous medium equation
  • Potential flow
  • Rayleigh–Bénard convection
  • Rayleigh–Plesset equation
  • Reynolds-averaged Navier–Stokes (RANS) equations
  • Reynolds transport theorem
  • Riemann problem
  • Taylor–von Neumann–Sedov blast wave
  • Turbulence modeling
  • Vorticity equation
  • Whitham equation
  • Zebiak-Cane model[1] for El Niño–Southern Oscillation
  • Zeldovich–Taylor flow

General relativity

  • Einstein field equations
  • Friedmann equations
  • Geodesic equation
  • Mathisson–Papapetrou–Dixon equations
  • Schrödinger–Newton equation

Materials science

  • Ginzburg–Landau equations in superconductivity
  • London equations in superconductivity
  • Poisson–Boltzmann equation in molecular dynamics

Nuclear physics

  • Radioactive decay equations

Plasma physics

Quantum mechanics and quantum field theory

Thermodynamics and statistical mechanics

Waves (mechanical or electromagnetic)

Engineering

Electrical and Electronic Engineering

  • Chua's circuit
  • Liénard equation to model oscillating circuits
  • Nonlinear Schrödinger equation in fiber optics
  • Telegrapher's equations
  • Van der Pol oscillator

Game theory

Mechanical engineering

  • Euler–Bernoulli beam theory
  • Timoshenko beam theory

Nuclear engineering

  • Neutron diffusion equation[3]

Optimal control

Orbital mechanics

  • Clohessy–Wiltshire equations
  • Planar reentry equations

Signal processing

Transportation engineering

  • Law of conservation in the kinematic wave model of traffic flow theory

Chemistry

  • Allen–Cahn equation in phase separation
  • Cahn–Hilliard equation in phase separation
  • Chemical reaction model
    • Brusselator
    • Oregonator
  • Master equation
  • Rate equation
  • Streeter–Phelps equation in water quality modeling

Biology and medicine

Population dynamics

  • Arditi–Ginzburg equations to describe predator–prey dynamics
  • Kolmogorov–Petrovsky–Piskunov equation (also known as Fisher's equation) to model population growth
  • Lotka–Volterra equations to describe the dynamics of biological systems in which two species interact

Economics and finance

Linguistics

  • Replicator dynamics in evolutionary linguistics

Military strategy

References

  1. ^ Zebiak, Stephen E.; Cane, Mark A. (1987). "A Model El Niño–Southern Oscillation". Monthly Weather Review. 115 (10): 2262–2278. doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2. ISSN 1520-0493.
  2. ^ Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, pp. 1–2, ISBN 0-13-111892-7
  3. ^ Ragheb, M. (2017). "Neutron Diffusion Theory" (PDF).
  4. ^ Choi, Youngsoo (2011). "PDE-constrained Optimization and Beyond" (PDF).
  5. ^ Heinkenschloss, Matthias (2008). "PDE Constrained Optimization" (PDF). SIAM Conference on Optimization.
  6. ^ Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad (1992). "Nonlinear total variation based noise removal algorithms". Physica D. 60 (1–4): 259–268. Bibcode:1992PhyD...60..259R. CiteSeerX 10.1.1.117.1675. doi:10.1016/0167-2789(92)90242-F.
  7. ^ Murray, James D. (2002). Mathematical Biology I: An Introduction (PDF). Interdisciplinary Applied Mathematics. Vol. 17 (3rd ed.). New York: Springer. pp. 395–417. doi:10.1007/b98868. ISBN 978-0-387-95223-9.
  8. ^ Fernández-Villaverde, Jesús (2010). "The econometrics of DSGE models" (PDF). SERIEs. 1 (1–2): 3–49. doi:10.1007/s13209-009-0014-7. S2CID 8631466.
  9. ^ Piazzesi, Monika (2010). "Affine Term Structure Models" (PDF).
  10. ^ Cardaliaguet, Pierre (2013). "Notes on Mean Field Games (from P.-L. Lions' lectures at Collège de France)" (PDF).