1590 – Galileo Galilei formulates modified Aristotelean theory of motion (later retracted) based on density rather than weight of objects.
1600s
Geometric diagram for Newton's proof of Kepler's second law.
1602-1608 – Galileo Galilei experiments with pendulum motion and inclined planes; deduces his law of free fall; and discovers that projectiles travel along parabolic trajectories.[3]
1610 – Johannes Kepler states the dark night paradox.[5]
1610 – Galileo Galilei publishes The Sidereal Messenger, detailing his astronomical discoveries made with a telescope.[6]
1619 – Johannes Kepler unveils his third law of planetary motion.[4]
1665-66 – Isaac Newton introduces an inverse-square law of universal gravitation uniting terrestrial and celestial theories of motion and uses it to predict the orbit of the Moon and the parabolic arc of projectiles (the latter using his generalization of the binomial theorem).[7]
1673 – Christiaan Huygens publishes his The Pendulum Clock, describing the motion of pendulums and the formula for centripetal acceleration during uniform circular motion, known to Isaac Newton since the 1660s.[8]: 14
1676-9 – Ole Rømer makes the first scientific determination of the speed of light.[9]
1684 – Isaac Newton proves that planets moving under an inverse-square force law will obey Kepler's laws in a letter to Edmond Halley.[7]
1686 – Isaac Newton uses a fixed length pendulum with weights of varying composition to test the weak equivalence principle to 1 part in 1000.[10][11]
1740s-1750s – Leonhard Euler and Alexis Clairault independently derive the equations of motion for the three-body problem and apply them to the Moon.[18]
1755 – Immanuel Kant advances Emanuel Swedenborg's nebular hypothesis on the origin of the Solar System.[19]
1765 – Leonhard Euler discovers the first three Lagrange points.[20][21]
1846 – Urbain Le Verrier and John Couch Adams independently show that the orbit of Uranus is perturbed by another planet, Neptune, promptly discovered by Johann Gottfried Galle.[26]: 151–2
1855 – Le Verrier observes a 38 arc-second per century excess precession of Mercury's orbit and attributes it to another planet, inside Mercury's orbit. The planet, called Vulcan, was never found. Le Verrier's figure is revised by Simon Newcomb to 43 arc-second per century in 1882.[18]
1876 – William Kingdon Clifford suggests that the motion of matter may be due to changes in the geometry of space.[27]
1884 – William Thomson (Lord Kelvin) lectures on the issues with the wave theory of light with regards to the luminiferous ether.[28]
1893 – Ernst Mach states Mach's principle, the first constructive critique of the idea of Newtonian absolute space.
1897 – Henri Poincaré questions whether absolute space, absolute time, and Euclidean geometry are applicable to physics.[32]
1900s
The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964.
1902 – Paul Gerber explains the movement of the perihelion of Mercury using finite speed of gravity.[33] His formula, at least approximately, matches the later model from Einstein's general relativity, but Gerber's theory was incorrect.
1906 – Max Planck coins the term Relativtheorie. Albert Einstein later uses the term Relativitätstheorie in a conversation with Paul Ehrenfest. He originally prefers calling it Invariance Theory.[42]
Einstein's 1911 argument for gravitational redshift
1911 – Max von Laue publishes the first textbook on special relativity.[54]
1911 – Albert Einstein explains the need to replace both special relativity and Newton's theory of gravity; he realizes that the principle of equivalence only holds locally, not globally.[55]
1916 – Karl Schwarzschild publishes the Schwarzschild metric about a month after Einstein published his general theory of relativity.[63][64] This was the first solution to the Einstein field equations other than the trivial flat space solution.[65][66][67]
1919 – Arthur Eddington leads a solar eclipse expedition which detects gravitational deflection of light by the Sun,[80] which, despite opinion to the contrary, survives modern scrutiny.[81] Other teams fail for reasons of war and politics.[82]
1934 – Walter Baade and Fritz Zwicky predict the existence of neutron stars.[107] Although their details are wrong, their basic idea is now accepted.[108]
1953 – P. C. Vaidya Newtonian time in general relativity, Nature, 171, p260.
1954 – Suraj Gupta sketches how to derive the equations of general relativity from quantum field theory for a massless spin-2 particle (the graviton).[125] His procedure was later carried out by Stanley Deser in 1970.[126][127]
1955-56 – Robert Kraichnan shows that under the appropriate assumptions, Einstein's field equations of gravitation arise from the quantum field theory of a massless spin-2 particle coupled to the stress-energy tensor.[128][129] This follows from his unpublished work as an undergraduate in 1947.[127]
1960 – Thomas Matthews and Allan R. Sandage associate 3C 48 with a point-like optical image, show radio source can be at most 15 light minutes in diameter,
1963 – Maarten Schmidt and Jesse Greenstein discover quasi-stellar objects, later shown to be moving away from Earth due to the expansion of the Universe.[45]
1964 – Steven Weinberg shows that a quantum field theory of interacting massless spin-2 particles is Lorentz invariant only if it satisfies the principle of equivalence.[147][148][127]
1971 – Introduction of the Khan–Penrose vacuum, a simple explicit colliding plane wave spacetime.
1971 – Robert H. Gowdy introduces the Gowdy vacuum solutions (cosmological models containing circulating gravitational waves).Image of Cygnus X-1 by the Chandra X-ray Observatory (2009)
1971 – Cygnus X-1, the first solid black hole candidate, discovered by Uhuru satellite.[45]
Computer simulation of a black hole accretion disk published in 1979 by Jean-Pierre Luminet1974 – James W. York and Niall Ó Murchadha present the analysis of the initial value formulation and examine the stability of its solutions.
1974 – R. O. Hansen introduces Hansen–Geroch multipole moments.
Variations in the temperature of the cosmic microwave background measured by the COBE satellite. The plane of the Milky Way Galaxy is horizontal across the middle of each picture.
1980 – Vera Rubin and colleagues study the rotational properties of UGC 2885, demonstrating the prevalence of dark matter.[209][210]
1986 – Bernard Schutz shows that cosmic distances can be determined using sources of gravitational waves without references to the cosmic distance ladder.[218] Standard-siren astronomy is born.
1995 – John F. Donoghue shows that general relativity is a quantum effective field theory.[226] This framework could be used to analyze binary systems observed by gravitational-wave observatories.[227]
Improving cosmological measurements by three different satellites
2010 – A team at the U.S. National Institute for Standards and Technology (NIST) verifies relativistic time dilation using optical atomic clocks.[241][242]
2017 – LIGO-VIRGO collaboration detects gravitational waves emitted by a neutron-star binary, GW170817.[251] The Fermi Gamma-ray Space Telescope and the International Gamma-ray Astrophysics Laboratory (INTEGRAL) unambiguously detect the corresponding gamma-ray burst.[252][253] LIGO-VIRGO and Fermi constrain the difference between the speed of gravity and the speed of light in vacuum to 10−15.[254] This marks the first time electromagnetic and gravitational waves are detected from a single source,[255][256] and give direct evidence that some (short) gamma-ray bursts are due to colliding neutron stars.[251][252]
2017 – Multi-messenger astronomy reveals neutron-star mergers to be responsible for the nucleosynthesis of some heavy elements,[257][258][259][260] such as strontium,[261] via the rapid-neutron capture or r-process.[262]
2017 – MICROSCOPE satellite experiment verifies the principle of equivalence to 10−15 in terms of the Eötvös ratio .[263] The final report is published in 2022.[264][265]
2017 – Scientists begin using gravitational-wave sources as "standard sirens" to measure the Hubble constant, finding its value to be broadly in line with the best estimates of the time.[267][268] Refinements of this technique will help resolve discrepancies between the different methods of measurements.[269]
2017 – Neutron Star Interior Composition Explorer (NICER) arrives on the International Space Station.[159]
2018 – Final paper by the Planck satellite collaboration.[270] Planck operated between 2009 and 2013.
2018 – Mihalis Dafermos and Jonathan Luk disprove the strong cosmic censorship hypothesis for the Cauchy horizon of an uncharged, rotating black hole.[271]
2018 – European Southern Observatory (ESO) observes gravitational redshift of radiation emitted by matter orbiting Sagittarius A*, the central supermassive black hole of the Milky Way,[272] and verifies the innermost stable circular orbit for that object.[273]
2018 – Advanced LIGO-VIRGO collaboration constrains equations of state for a neutron star using GW170817.[274][275]
2018 – Luciano Rezzolla, Elias R. Most, and Lukas R. Weih used gravitational-wave data from GW170817 constrain the possible maximum mass for a neutron star to around 2.17 solar masses.[276]
2018 – Kris Pardo, Maya Fishbach, Daniel Holz, and David Spergel limit the number of spacetime dimensions through which gravitational waves can propagate to 3 + 1, in line with general relativity and ruling out models that allow for "leakage" to higher dimensions of space.[277][278] Analyses of GW170817 have also ruled out many other alternatives to general relativity,[279][280][281][282] and proposals for dark energy.[283][284][285][286][287]
2018 – Two different experimental teams report highly precise values of Newton's gravitational constant that slightly disagree.[288][289][290]
2019 – Advanced LIGO and VIRGO detect GW190814, the collision of a 26-solar-mass black hole and a 2.6-solar-mass object, either an extremely heavy neutron star or a very light black hole.[294][295] This is the largest mass gap seen in a gravitational-wave source to-date.
2020s
The size of Sagittarius A* is smaller than the orbit of Mercury.
2021 – Jun Ye and his team measure gravitational redshift with an accuracy of 7.6 × 10−21 using an ultracold cloud of 100,000 strontium atoms in an optical lattice.[299][300]
2021 – EHT measures the polarization of the ring of M87*,[301] and other properties of the magnetic field in its vicinity.[302]
2021 – EHT releases an image of Sagittarius A*,[303][304] measures its shadow,[305] and shows that it is accurately described by the Kerr metric.[306][307]
2022 – James Webb Space Telescope (JWST) publishes its first image, a deep-field photograph of the SMACS 0723 galaxy cluster.[313]
2022 – Neil Gehrels Swift Observatory detects GRB 221009A, the brightest gamma-ray burst recorded.[314][315][316]
2022 – JWST identifies several candidate high-redshift objects, corresponding to just a few hundred million years after the Big Bang.[317][318]
2023 – James Nightingale and colleagues detect Abell 1201, an ultramassive black hole (33 billion solar masses), using strong gravitational lensing.[319]
2023 – Matteo Bachetti and colleagues confirm that neutron star M82 X-2 is violating the Eddington limit, making it an ultraluminous X-ray source (ULX).[320][321]
2023 – Team led by Dong Sheng and Zheng-Tian Lu found a null result for the coupling between quantum spin and gravity to 10−9.[322][323]
2023 – The North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the European Pulsar Timing Array (EPTA), the Parkes Pulsar Timing Array (Australia), and the Chinese Pulsar Timing Array report detection of a gravitational-wave background.[324][325][326][327][328]
2023 – Geraint F. Lewis and Brendon Brewer present evidence of cosmological time dilation in quasars.[329][330]
2024 – The Large High Altitude Air Shower Observatory (LHAASO) collaboration imposes stringent limits on violations of Lorentz invariance proposed in certain theories of quantum gravity using GRB 221009A.[331][332]
^ abBauer, Susan Wise (2015). "Chapter Seven: The Last Ancient Astronomer". The Story of Science from the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN 978-0-393-24326-0.
^Gribbin, John (2003). "Chapter 3: The First Scientists". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 76–7. ISBN 978-1-400-06013-9.
^ abPasachoff, Naomi; Pasachoff, Jay (2012). "Galileo Galilei". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
^ abDolnick, Edward (2011). "Timeline". The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World. New York: Harper Collins. ISBN 9780061719516.
^Bauer, Susan Wise (2015). "Chapter Ten: The Death of Aristotle". The Story of Science: From the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN 978-0-393-24326-0.
^ abIliffe, Rob (2012). "Isaac Newton". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
^ abcCohen, I. Bernard (1999). A Guide to Newton's Principia. University of California Press. ISBN 978-0-520-08817-7.
^Gribbin, John (2002). "4. Science Finds Its Feet". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. New york: Random House. pp. 122–23. ISBN 0-8129-6788-7.
^ abNewton, Isaac (1999). The Principia: The Authoritative Translation and Guide. Translated by Cohen, I. Bernard; Whitman, Anne; Budenz, Julia. University of California Press. ISBN 978-0-520-29088-4.
^Kleppner, Daniel; Kolenkow, Robert J. (1973). "8.4: The Principle of Equivalence". An Introduction to Mechanics. McGraw-Hill. pp. 353–54. ISBN 0-07-035048-5.
^Maclaurin, Colin. A Treatise of Fluxions: In Two Books. 1. Vol. 1. Ruddimans, 1742.
^Chandrasekhar, Subrahmanyan (1969). "5: The Maclaurin Spheroids". Ellipsoidal Figures of Equilibrium. New Haven: Yale University Press. ISBN 978-0-30001-116-6.
^ abcdeWilson, Curtis (2002). "Newton and Celestial Mechanics". In Cohen, I. Bernard; Smith, George (eds.). The Cambridge Companion to Newton. Cambridge University Press. ISBN 0-521-65696-6.
^ abWoolfson, M.M. (1993). "Solar System – its origin and evolution". Q. J. R. Astron. Soc. 34: 1–20. Bibcode:1993QJRAS..34....1W. For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
^Clotfelter, B.E. (1987). "The Cavendish Experiment as Cavendish Knew It". American Journal of Physics. 55 (3): 210–213. Bibcode:1987AmJPh..55..210C. doi:10.1119/1.15214.
^Eisenstaedt, Jean (2006). The Curious History of Relativity: How Einstein's Theory of Gravity Was Lost and Found Again [Arturo]. Translated by Sangalli. Princeton, NJ: Princeton University Press. ISBN 978-0-691-11865-9.
^French, A. P. (1968). "Chapter 2: Perplexities in the Propagation of Light". Special Relativity. New York: W. W. Norton & Company. pp. 52–58. ISBN 0-393-09793-5.
^ abRobinson, Andrew (2012). "Albert Einstein". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN 978-0-500-25191-1.
^Galison, Peter (2014). "Einstein and Poincaré". In Brockman, John (ed.). The Universe. New York: HarperCollins. ISBN 978-0-06-229608-5.
^Gribbin, John (2004). "11. Let There be Light". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 440–1. ISBN 978-0-812-96788-3.
^Born, Max (1909). "Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips". Physikalische Zeitschrift. 10: 814–17.
^Ehrenfest, Paul (1909). "Gleichförmige Rotation starrer Körper und Relativitätstheorie" [Uniform Rotation of Rigid Bodies and Theory of Relativity]. Physikalische Zeitschrift (in German). 10 (918): 918. Bibcode:1909PhyZ...10..918E.
^Kottler, Friedrich (1912). "Über die Raumzeitlinien der Minkowski'schen Welt" [On the Spacetime Lines of a Minkowski World]. Wiener Sitzungsberichte 2a (in German). 121: 1659–1759.
^Einstein, Albert (1915). "Feldgleichungen der Gravitation" [Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847.
^Einstein, Albert (1915). "Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie" [Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 831–839. Bibcode:1915SPAW.......831E.
^Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407
^Marsden, Jerrold; Tromba, Anthony (2012). "7.7 Applications to Differential Geometry, Physics, and Forms of Life". Vector Calculus (6th ed.). New York: W. H. Freeman Company. p. 422. ISBN 978-1-4292-1508-4.
^Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit" [On the Gravitational Field of a Sphere of Incompressible Fluid]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
^Eisenstaedt, "The Early Interpretation of the Schwarzschild Solution," in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
^Bartusiak, Marcia (2015). "Chapter 3: One Would Then Find Oneself... in a Geometrical Fairyland". Black Hole: How An Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN 978-0-300-21085-9.
^Einstein, Albert (1916). "Näherungsweise Integration der Feldgleichungen der Gravitation" [Approximate Integration of the Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 688–696. Bibcode:1916SPAW.......688E.
^Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" [Cosmological Considerations in the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German). 1: 142–152.
^The Internal Constitution of the Stars A. S. Eddington The Scientific Monthly Vol. 11, No. 4 (Oct., 1920), pp. 297–303 JSTOR 6491
^Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 33. Bibcode:1918PhyZ...19...33T. [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
^Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift. 22: 29. Bibcode:1921PhyZ...22...29T. [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
^Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 156–163. Bibcode:1918PhyZ...19..156L. [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
^Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) (in German): 966–972. Bibcode:1921SPAW.......966K.
^Pais, Abraham (2000). "Chapter 7: Oskar Klein". The Genius of Science: A Portrait Gallery of Twentieth-Century Physicists. New York: Oxford University Press. ISBN 0-19-850614-7.
^Segrè, Gino; Hoerlin, Bettina (2016). "Chapter 4: Student Days". The Pope of Physics. Henry Holt and Co. p. 27. ISBN 978-1-627-79005-5.
^ abHitchin, N. J. (2006). "Arthur Geoffrey Walker. 17 July 1909 -- 31 March 2001: Elected FRS 1955". Biographical Memoirs of Fellows of the Royal Society. 52: 413–421. doi:10.1098/rsbm.2006.0028.
^van Stuckum, Willem Jacob (1938). "The gravitational field of a distribution of particles rotating around an axis of symmetry". Proceedings of the Royal Society of Edinburgh. 57: 135–154. doi:10.1017/S0370164600013699.
^Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine. 11 (70): 592–596. doi:10.1080/14786443109461710. S2CID 119906976.
^Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" [On the Cosmological Problem of the General Theory of Relativity]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 235–237.
^D. I., Blokhintsev; F. M., Gal'perin (1934). "Гипотеза нейтрино и закон сохранения энергии" [Neutrino hypothesis and conservation of energy]. Pod Znamenem Marxisma (in Russian). 6: 147–157. ISBN 978-5-04-008956-7. {{cite journal}}: ISBN / Date incompatibility (help)
^Farmelo, Graham (2009). The Strangest Man : The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber. pp. 367–368. ISBN 978-0-571-22278-0.
^Einstein, Albert; Infeld, Leopold; Hoffmann, Banesh (1938). "The Gravitational Equations and the Problem of Motion". Annals of Mathematics. 39 (1): 65–100. doi:10.2307/1968714. JSTOR 1968714.
^ abcdePreskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002). PDF link
^Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society. 64: 261–284. arXiv:1707.00139. doi:10.1098/rsbm.2017.0022. ISSN 0080-4606. S2CID 67365148.
^Goldberg, J. N.; Sachs, R. K. (1962). "A theorem on Petrov types (republished January 2009)". General Relativity and Gravitation. 41 (2): 433–444. doi:10.1007/s10714-008-0722-5. S2CID 122155922.; originally published in Acta Phys. Pol. 22, 13–23 (1962).
^Weinberg, Steven (1964). "Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix". Physics Letters. 9 (4): 357–359. Bibcode:1964PhL.....9..357W. doi:10.1016/0031-9163(64)90396-8.
^Weinberg, Steven (1964). "Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass". Physical Review. 135 (4B): B1049 –B1056. Bibcode:1964PhRv..135.1049W. doi:10.1103/PhysRev.135.B1049.
^Chiu, Hong-Yee (May 1964). "Gravitational collapse". Physics Today. 17 (5): 21–34. Bibcode:1964PhT....17e..21C. doi:10.1063/1.3051610. So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.
^Bartusiak, Marcia (2015). "Chapter 9: Why Don't You Call It A Black Hole?". Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN 978-0-300-21085-9.
^Chandrasekhar, S. (1967). "The post-Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the MacLaurin spheroids". The Astrophysical Journal. 147: 334. Bibcode:1967ApJ...147..334C. doi:10.1086/149003.
^Jackson, John David (1999). "Section I.2: Inverse Square Law or Mass of the Photon". Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. pp. 5–9. ISBN 0-471-30932-X.
^H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics. 14 (1): 104–118. Bibcode:1973JMP....14..104E. doi:10.1063/1.1666161.
^Townsend, John S. (2012). "Section 8.7: Quantum Interference due to Gravity". A Modern Approach to Quantum Mechanics (2nd ed.). University Science Books. pp. 297–99. ISBN 978-1-891389-78-8.
^Chandrasekhar, S.; Detweiler, S. (1975). "The quasi-normal modes of the Schwarzchild black hole". Proc. R. Soc. Lond. A. 344 (1639): 441–452. Bibcode:1975RSPSA.344..441C. doi:10.1098/rspa.1975.0112.
^Detweiler, Steven L. (1979). "Pulsar timing measurements and the search for gravitational waves". Astrophys. J. 234: 1100. Bibcode:1979ApJ...234.1100D. doi:10.1086/157593.
^Taylor, J. H.; Weisberg, J. M. (1982). "A new test of general relativity – Gravitational radiation and the binary pulsar PSR 1913+16". Astrophysical Journal. 253: 908–920. Bibcode:1982ApJ...253..908T. doi:10.1086/159690.
^Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press. ISBN 0-691-08777-6.
^Goldberger, Walter; Rothstein, Ira (2004). "An Effective Field Theory of Gravity for Extended Objects". Physical Review D. 73 (10): 104029. arXiv:hep-th/0409156. doi:10.1103/PhysRevD.73.104029. S2CID 54188791.{{cite journal}}: CS1 maint: article number as page number (link)
^Reiss, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John (1998). "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant". The Astronomical Journal. 116 (3): 1009–1038. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499. S2CID 15640044.
^Buonanno, A.; Damour, T. (1999-03-08). "Effective one-body approach to general relativistic two-body dynamics". Physical Review D. 59 (8). American Physical Society (APS): 084006. arXiv:gr-qc/9811091. Bibcode:1999PhRvD..59h4006B. doi:10.1103/physrevd.59.084006. ISSN 0556-2821. S2CID 14951569.{{cite journal}}: CS1 maint: article number as page number (link)
^McLaughlin, Maura (October 16, 2017). "Neutron Star Merger Seen and Heard". Physics. Vol. 10, no. 114. American Physical Society. Retrieved May 12, 2023.
^Bettoni D, Ezquiaga JM, Hinterbichler K, Zumalacárregui M (14 April 2017). "Speed of gravitational waves and the fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv:1608.01982. Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010. S2CID 119186001.{{cite journal}}: CS1 maint: article number as page number (link)
^Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (December 2017). "Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A". Physical Review Letters. 119 (25): 251301. arXiv:1710.06394. Bibcode:2017PhRvL.119y1301B. doi:10.1103/PhysRevLett.119.251301. PMID 29303333. S2CID 36160359.{{cite journal}}: CS1 maint: article number as page number (link)
^Landau, Elizabeth (April 10, 2019). "Black Hole Image Makes History". Jet Propulsion Laboratory, California Institute of Technology. Retrieved May 17, 2023.
^Antoniadis, J.; et al. (June 28, 2023). "The second data release from the European Pulsar Timing Array". Astronomy & Astrophysics. 678: A50. arXiv:2306.16214. doi:10.1051/0004-6361/202346844. S2CID 259274756.